Olympus FV3000RS Confocal Microscope

Location: Ross S913

Olympus FV3000RS Confocal Microscope

Please acknowledge NIH shared instrumentation grant 1S10OD025244-01 (Prof. Brian O'Rourke and Prof. Mark Donowitz). See below for more details, including award abstract at bottom.

20191104M (November 4, 2019): we are now on JHU iLab for scheduling.

Ross Imaging Center Olympus FV3000RS Confocal Microscope

Use iLab!!!

If a user needs their PI or administrator to set up account numbers (IO#'s in JHU accounting jargon), see



** Please note that image core management sometimes has to cancel/postpone user sessions due to required service visits or other reasons. When this happens we will try to make the user's next imaging session be "no charge" (even if longer than the cancelled session). 

Please acknowledge NIH shared instrumentation grant 1S10OD025244-01 (Prof. Brian O'Rourke and Prof. Mark Donowitz).

For details on our award, please see


Our recommendation for Acknowledgement section of your manuscript is:

The Olympus FV3000RS confocal microscope was acquired with NIH shared instrumentation grant 1S10OD025244-01 (Prof. Brian O'Rourke and Prof. Mark Donowitz) and used in the Ross Fluorescence Imaging Center, Hopkins Conte Digestive Diseases Basic & Translational Research Core Center.


Rate: $27/hr. 

Please note that our G.I. Center supplements its members use. 

* We thank:

Jason Brenner and John Gibas, Olympus, for demonstrating the system.
Prof. Brian O'Rourke, PI of the NIH grant (and Associate Director of our core).
Prof. Mark Donowitz, S10 grant co-author, P.I. NIH P30DK089502 grant funded Hopkins Digestive Diseases Basic and Translational Research Core Center, and much more.
Prof. Olga Kovbasnjuk - former core Director, now at University of New Mexico.
All the 8 Major and 2 minor project P.I.'s and users, for making demo(s) successful.
NIH and U.S., taxpayers, for the grant; NIH S10 shared instrumentation 'confocal microscopes' study section members, and NIH Council, for our award.
Olympus for accepting our Zeiss LSM510META confocal microscope scanhead for credit toward our new microscope.


The NIH S10 grant proposal projects that enabled our funding of the FV3000RS -- these, and newer-than-S10 pilot projects, are our priorities for year 1 (Sept 2018-August 2019). 

Major Users projects:

1) Mark Donowitz, MD, Coordinated Regulation of Intestinal NaCl Absorption and Anion Secretion in Health and Disease.

2) Pankaj Pasricha, MBBS, MD/Subash Kulharni, PhD, Imaging the structure of the Enteric Nervous System and its associated cells.

3) Cynthia Sears, MD, Bacterial Biofirms and Colon Cancer, with Emphasis on Toxigenic B. Fragilis.

4) Nicholas Zachos, PhD, Mechanisms of Diarrhea Examined by Live Cell Imaging of Human Enteroids.

5) Brian O'Rourke, PhD, Project Title: Mitochondrial dysfunction as a source of cardiac arrhythmias and heat failure.

Minor Users projects:

6) Joanna Melia, MD, ZIP8 as a Mediator of Intestinal Inflmmation and Intracellular Zinc Homeostasis (Zinc ion micronutrient transporter in Inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis).

7) Jennifer Foulke-Abel, PhD, Enterotoxigenic E. coli pathogenesis and human enteroids (ETEC), 

8) David A. Kass, MD, Leveraging Protein Kinase G-1 Nanodomain Control and Molecular Targeting to Enhance its Therapeutic Use Against Myocardial Disease.

Two of our Minor Users moved to University New Mexico - we hope the time made available will help support our GI Center's pilot projects, and additional users from all over.



Please note the news items sometime include policy statements.


October 4, 2019

1. we are moving to Agilent iLab Organizer ... went live November 4, 2019. 

2. Scanning times at 512x512 pixel format, no averaging (multiple by 2, 3, etc, up to 16, if averaging).

Resonant Scan        Pixel dwell time             line                       frame              Typical
Uni-directional            0.067 usec              0.127 msec       65.729 msec         16 line average --> 1 second for single scan track, 512x512 pixels, zoom to Nyquist sampling pixel size.
Bi-directional              0.067 usec              0.063 usec        33.333 msec
Galvo Scan             Pixel dwell time              line                      frame
Uni-directional             2.000 usec             2.116 msec       1.086 seconds       5 line average --> scan time depends on image format (max 4096x4096 pixels).
Bi-directional               0.500 usec             0.488 msec       0.250 seconds

==> More on Resonant scanner below. 


April 22, 2019: Use of our two NIR GaAs PMTs:

  • the optimum "HV" = 500, and are controlled by knobs on each of the two power supplies above the electronics cabinet (the front panels are: 0.500 Volts = 500 mV). 500 according to Jason Brenner, our Olympus confocal salesperson. GM is ok with user's evaluating other settings (i.e. 600, 700), note that the saturation warning (HiLo software LUT) cangive way to a protection circuit ... upshot is do NOT saturate the NIR PMTs (or our GaAsP internal PMTs).
  • these GaAs PMTs have higher quantum efficiency (QE) above 712 nm, compared to using the four internal GaAsP PMTs -- see  Wang 2016 IEEEPhotonics.graph later on this web page.
  • We plan to purchase Spherotech UltraRainbow fluorescent beads, fluoresce from UV to NIR, for testing --> our thanks to Olympus tech support for suggestion.
  • We expect Li-Cor Dyes IRDye680 (or IRDye700) on "CH1" (EXTERNAL pmt #1) and IRDye800 on "CH2" (external PMT #2) will work well ... compatibility with Donowitz lab (and many other research labs) Li-Cor Odyssey Western blots 'gel documentation & quantitation' systems (NIR fluorescence works nicely for Western blots inpart because lower autofluorescence of the support matrix, glass, etc).
  • Li-Cor dyes are not the only option: some AlexaFluor, Abberior, ATTO, CyDyes, could be used. GM is especially hoping that chlorins and bacteriochlorins will work well (i.e. antibody or oligonucleotides), since extremely narrow emission spectrum -- NIRvana Sciences has graphed 8 dyes emission 600-800 nm range (see background graphic for Bruce Pitner, CSO, NIRvana Sciences, on linkedin). Of course 8 bacteriochlorins would be best imaged simultaneously, maybe all four internal GaAs (600-700 nm, if FV3000RS dichroics were optimized for this), plus FOUR external (we have two now): i.e. one GaAsP for 700-725 nm dye, three GaAs PMTs. Of course if NIRvana and/or other can "do" 8 dyes in 600-800nm, maybe could "do" an additional four in 800-900 nm, implying an additional four external detectors (for 8 total, plus the four internal). I also note that chlorins and bacteriochlorins might work well as tandem acceptors of Brilliant Ultraviolet, Brilliant Violet, Brilliant Blue, and Brilliant Green-Yellow, for potentially 4 donors * 12 acceptors ==> 48plex NIR + the four donors = 52plex (plus spatial resolution could be of the photons from the donors, since not 100% transfer to acceptors ... see my linkedin blog, "Resolution Blues", https://www.linkedin.com/pulse/resolution-blues-meets-21plex-salute-fluorescence-basic-mcnamara/ and Brilliants in graphic table in March 29, 2019, news immediately below.
  • The current filter cube splitting the light onto CH1 = 690-750 and CH2 = 780LP, is exchangable ... if someone would like to invest in, and donate to the image core more cubes (Olympus IX83 standard format cubes), or convince us to spend our core money on cube(s) [we think simpler to gain experience with current cube). 

March 29, 2019: Brilliant Violet BV421 works fine on our confocal microscopes (used twice on SP8 for live cells).

2019 plex

When will confocal microscope users start using Brilliant Violets and Brilliant Blues and/or SuperBrights?

BD Fluorophores Table

 More of my thoughts on Brilliants, and similar (SuperBrights, NIRvana prototypes, etc) at my linkedin Pulse blog pages:

                                           20190223: https://www.linkedin.com/pulse/fluorescence-spectra-graphs-george-mcnamara

                                           20180505: https://www.linkedin.com/pulse/18plex-flow-cytometry-from-brilliants-when-catch-up-george-mcnamara

                                           20170914: https://www.linkedin.com/pulse/resolution-blues-meets-21plex-salute-fluorescence-basic-mcnamara

and BD Biosciences is now at 21plex for all Brilliants



BUV ... 7plex ... note: we do not have a UV laser (and have not tested -- yet -- whether our CW 640 nm or 730 nm lasers will result in 2-photon excitation of BUVs or BVs).

BV ... 9plex (!!!) of which BV510 is wide emission spectrum (in principle, not an issue if acquisition settings and spectral unmixing algorithms 'deal well with it' ... probably best to use BV510 on some 'dump channel').

BB ... 5plex.

BYG ... 1plex (as of 20190331), should be possible for BD Biosciences to make more.

So, on our FV3000RS, potential for 9 BV + 5 BB + 1 BYG = 15plex. 

Brilliant's are typically direct label antibodies, so, if $1 per plex per microscope slide or imaging dish, $15 for one assay. I suggest staining cells in suspension, doing flow cytometry, and bringing 'left over' cells to the imagecore(please use minimal biohazard cells!!!).


Note :Biolegend has 8 Brilliant Violets available:





[FACSSymphony Reagents - Table]

March 15, 2019: ZDC830 installed = Olympus Zero Drift Compensation unit wavelength changed from 730nm (temporary unit shipped with installation) to 830nm.

                                   Please note: 830nm is in the wavelength range of External PMT #2 ("ePMT#2" sixth pmt on the confocal).

                                    Depending on your settings, the ZDC 830 nm signal might get to "ePMT#2", so please turn off "continuous ZDC" if using ePMT#2.

December 20, 2018: Tip - transferring files/folders to Microsoft OneDrive:

                                 I suggest using 7-ZIP to package all of your session's files&folders into a single zip file (ex. Mary Elizabeth Garrett 20181220Thur awesome FV3000RS expt.zip).

                                 Every JHU staff (employee, student) gets 5 Terabytes of Microsoft OneDrive space (MyJHU -> Cloud -> OneDrive), so nice way to back up all your data.

November 27, 2018: Our OkoLab inserts are not a good match to LabTek chamber slides (even though oneinsert is for LabTek). 

                                We recommend using 35 mm imaging dishes. For example, www.cellvis.com 35 mm imaging dishes are $1 to $2 per dish

                                ($100 to $200 per case of 100 dishes), depending on format (and offer other formats).


                               Other companies have imaging dishes, such as Mattek (35 mm formats) and WPI (FluoroDishes).

November 13, 2018: 7 and 6 !!!    730nm laser and GaAs NIR PMTs are here bringing us to 7 lasers and 6 PMTs.

        The NIR PMTs should be used at 0.500 HV (just leave the external boxes as is). The internal FluoView software controls do not do anything, just ignoe them.

        It is possible to have all 7 laser lines active by enabling all seven detectors (HSD1-HSD4, TD, CH1, CH2) and selecting different laser lines for each.

October 19, 2018: OkoLab incubator policy:

Temperature: if you are using, turn on one hour before your session (if needed add one hour to reservation time since the current user can keep it off through the end of their session). Turn OkoLab unit off when you are done. 
CO2: if you do not need it, set the controller to zero (0%), so the unit does not beep at you or anyone else.
Openings: No openings! Cover all the openings if it is possible. ex. 2 slide holder: if you use one slide, fill the other slide position with a glass slide. For the few people with special chambers that cannot fill the opening, ok, you are special.

Sept 28, 2018: Extended imaging sessions: we ask that users who require a lot of time in one day (i.e. >6 hours) work out how to conduct the imaging to additional user(s) to image the same workday, whenever possible. For example, rather than book 9am-5pm, get to know the instrument and your specimens performance on it, so you can acquire overnight from say 4pm-12midnight (unattended, if no liquid perfusion involved). For very long experiments, please build up your skill set(s) to run from (say) 4pm Friday to 9am Monday. The Olympus ZDC (zero drift compensation) device works well and enables stable focus -- especially in conjunction with the OkoLab stage top + shroud environmental control unit to maintain constant temperature (and humidity, and CO2 control for experiments needing these). 

   The main exception is the major project that proposed to do 24 hour imaging sessions, every week, for 6 months. If the users end up conducting over weekends, great; if their experiiment will work best for them during work week, that is fine: the experiment was part of the reason we were awarded the S10 grant. 

Sept 25, 2018:

* John Gibas optimized the network connection between our FV3000RS computer and our file server so that 10 Gbit Ethernet direct connection is working well. Thanks John! Our server is connected to the campus network by 1 Gbit (the Ross Bldg network). As part of our teaching image core users, we explain how to access our file server from JHU computers (we continue our longstanding policy of no usb drives on our computers ... we provide login capability on specific image core computers to enable users to transfer from our server to their JHU Microsoft OneDrive 5 Terabyte per staff member space for those labs whose PC's or Mac's cannot see our file server).

* OkoLab stage top and shroud incubator unit is up and running. We do have a CO2 tank available in the room. Please note that all experiments involving OkoLab incubator MUST have all openings in the insert covered to protect the "microscope insides" (objective lens turret etc) from humidity. We have placed 35 mm and 60 mm dishes, and slides, on the top of the cabinet, where all the inserts are also kept, to cover the openings.

Sept 5, 2018: Late arriving accessories status:

Oko Lab incubator expected to be installed mid-September.
730 nm laser and two external GaAs photomultiplier tube (PMT) detectors expected to be installed late October 2018.

Sept 4, 2018: Our FV3000RS was delivered and installed mid-August 2018. We anticipate image core manager George McNamara will be training the first cohort of users in late August through September 2018. Jason Brenner of Olympus is greatly helping by training users who need "advanced applications", such as FRAP time series (fluorescence recovery after photobleaching).


Priorities: the microscope is open access with prioritization for year 1 (Sept 2018-Aug 2019) primarily for the S10 projects it was purchased for.

Priority in year 1 is to enable our S10 grant Major and Minor project users to do the work the grant proposal was written for. We will accomodate additional projects (from M&M users labs, new pilot projects funded by the G.I. Center after the S10 submission), and additional users, if time slots are available. We recognize that many researchers need new data to help get new funding, so in addition to supporting our G.I. pilot project, we will do our best to help all researchers, whether on this FV3000RS or our other microscopes or even just advice. We also manage the ACCM confocal Microscope http://confocal.jhu.edu/current-equipment/leica-sp8-confocal-microscope  so if FV3000RS is too busy with year 1 M&M Projects, please discuss with us use of the ACCM Confocal microscope - a very nice Leica SP8 confocal DMi8 inverted microscope.



* IX83 inverted microscope stand.

* 6 position objective lens nosepiece turret. ... Initially we have on the microscope: 2x, 10x, 20x dry plus all three silicone oil objective lenses -- that is, the S-APO 60x/1.4 NA standard oil immersion objective lens is not on the microscope, and users are not permitted to change objective lenses (and Dr. McNamara is not going to reconfigure the microscope for each user). We recommend our Leica SP8 vconfocal microscope = iLab Organizer's ACCM Confocal Microscope, with 63x1.4NA lens, for standard coverglass-specimen preparations that have refractive index match to standard oil. 

* nice suite of three silicone oil objectives (30x, 40x, 100x) -- 1.405 refractive index. See Boothe et al 2017 ELife, https://elifesciences.org/articles/27240  for use with live cells and embryos.

* dry lenses: 2x (NA 0.08), 10x, 20x,

* 'standard' oil immersion UPlanSApo 60x objective lens. ==> This lens is not on the microscope because there are 6 positions on the objective lens turret and we have chosen to standardize on the 3 dry and 3 S.I. objective lenses. The Leica SP8 confocal microscope has equivalent lens and you should learn it instead.

PLAPON2X;         PLAN           APO  2X               NA 0.08,WD 6.2MM
UPLSAPO10X2;   U PLANS S-APO 10X               NA 0.40, WD 3.1MM
UPLSAPO20X;     U PLAN   S-APO 20X,              NA 0.75, WD 0.6MM



* 405nm, 445nm, 488nm, 514nm, 561nm, 640nm and 730nm lasers. the 405-640 nm lines are Coherent OBIS solid state lasers; the 730nm is special NIR laser.

405nm 50mW
445nm 75mW
488nm 20mW
514nm __mW
561nm 20mW
640nm 40mW
730nm   ?mW

* Four internal "spectral" GaAsP fluorescence photomultiplier tube (PMT) detectors (most '3000s have two GaAsP, two 'standard' PMTs)

* Two external GaAs near infrared fluorescence photomultiplier tube (NIR PMT) detectors (nearly all '3000s lack any external detectors). From Wang 2016 IEEEPhotonics.

[GaAsP vs GaAs ... transition wavelength 712 nm]

NIR dichroics and emission filters:

OCT-T685LPXR ... T685lpxr; Long-pass dichroic 685nm 12.7x2mm unmounted (inside scanhead)
T760LPXR; 760nm DICHROIC BEAMSPLITTER 26MMX38MM (standard Olympus filter cube splitting NIR1 and NIR2 PMTs)

OCT-ET720/60M ... NIR1 GaAs PMT emission filter.
OCT-ET780LP    ... NIR2 GaAs PMT emission filter.

* Transmitted light detector.

* RS = Resonant Scanner (high speed). 

* Standard confocal galvo scanner also installed (i.e. large field of view, high pixel count).

* laser autofocus (ZDC2 = zero drift compensation).

* SSU "ultrasonic" gliding stage (much nicer than a typical motorized stage).

* OKO Lab stage top incubator. 

* Advanced software set
       * 3D DECONVOLUTION (license moved 7/2019 to our new FISHscope).

FV3000 plus Tiki_Goddess 20180418F 

if you don't know Tiki_Goddess, see http://confocal.jhu.edu/gallery 


McNamara 20191217

Olympus FV3000RS Resonant Linescan Mode

8000 lines per second, 512 x 1 pixels.

Resonant scan mode is 10-bit dynamic range, 0 .. 1023.
Need to use Zoom = 1
No averaging
Go live, click on Line ROI, click in image window … position horizontal line.

Low laser power prudent to not kill your cells.
Good to check that the master beamsplitter and all dichroics are set correctly.
Detector emission bands should be at least 10 nm from any laser line (protect our PMTs!).
1.0 Airy units is ‘standard’ confocal pinhole size. See below for more on this.
HV 500 mV is ‘standard of care’ for our GaAsP internal and GaAs external PMTs.
Gain = 1.0 (always).
Offset … typically 1 or 2%… goal is to have zero light be above zero intensity (~50 is good).

Optional: You can increase dynamic range by turning on TWO or more detectors, with adjacent bandpasses, assuming your fluorophore and a detector pair dichroic splits the light path, such as 540nm split to PMT1 and PMT2. (I would like to see an option for polarizing beamsplitter or neutral density filter, and have FluoView ‘do the math’). You do the math later, i.e. Fiji ImageJ or MetaMorph.


Pinhole setting: 1 Airy Unit is standard, you can choose a different value (and is different for same diameter, different emission wavelength bands). Brightness is area of a circle (pi * r^2), relative to 1 Airy unit, and implies one subresolution fluorescent volume. Examples:

0.5 Airy unit … 1.2x better resolution per axis, but (0.5)^2 = 0.25 brightness.
0.6 – 0.7 A.U. … ~1.1x better, (0.6)^2 = 0.36, to (0.7)^2 = 0.49, “confocal sweet spot” – Jeff Reece, NIH.
0.666 A.U. … ~1.1x better, (0.666)^2 = 0.44, “confocal sweetest spot” – GM single value alternative to J.R.’s range.
1.0 A.U. … 1x … please note that this diameter pretty much matches the excitation laser spot size.
1.5 A.U. … more light, both from adjacent XY and above and below.
2.0 A.U. … even more light, both from adjacent XY and above and below.
3.0 A.U. … yet more light, both from adjacent XY and above and below.
>> A.U. … quasi widefield of spot illumination. Can be helpful finding right focus of specimen (if careful).


Published Olympus FV3000 Confocal image data --> Cellsens Deconvolvution

Hinman SS, Wang Y, Allbritton NL. Photopatterned Membranes and Chemical Gradients Enable Scalable Phenotypic Organization of Primary Human Colon Epithelial Models. Anal Chem. 2019 Dec 3;91(23):15240-15247. doi: 10.1021/acs.analchem.9b04217. PMID: 31692334


Figure below from Hinman et al, supplemental file, annotated by GM. "Advanced Maximum likelihood" (advmle) is an option in Olympus Cellsens "constrained iterative" (C.I.) deconvolution module (extra cost from Cellsens basic ... our advmle license was purchased on our FV3000RS NIH S10 grant and moved to our NIH P30 supplement co-founded FISHscope PC. So: you should cite both our S10 and P30 grant numbers if you publish data with our deconvolution software.


S10 Grant

NIH S10 Award Abstract

NIH S10 Shared Instrumentation Grant


Project Number: 1S10OD025244-01

Contact PI / Project Leader: O'ROURKE, BRIAN


Abstract Text:
The Olympus FLUOVIEW FV3000RS high speed, high resolution confocal microscope is applied for as a major component of the Imaging Core of the Hopkins NIH/NIDDK GI Core Center. It will replace our 10 year old Zeiss 510 Meta Confocal microscope, which is no longer supported by Zeiss for service contracts or for replacement parts. This Core Center has 56 Hopkins faculty as its research base and has as its major mission to make GI research as high a quality as possible at Hopkins, with excellence in imaging being a major strength of this Center. The GI Core Center was recently renewed and is in year 6 of 10 of NIH support. What sets the GI Core Center apart from other Hopkins imaging resources is that our users carry out live cell imaging studies of physiology and pathophysiology that often require study over many hours or days and our Imaging Core is able to provide time for these studies. We list as examples 8 major and 2 minor users. The major users require this instrument to accomplish the stated Aims of their NIH funded projects. All major and minor users, except for several users from the Cardiology division are GI Core Center members. The advanced features of the FV3000RS significantly add to standard confocal microscope capabilities and their value to our research base for their physiologic and pathophysiologic studies include: live cell imaging/environmental chamber (physiologic studies of intact intestine and human and murine enteroids for host-pathogen and microbiome interactions, cardiac pathophysiology, diseases and normal function of the enteric nervous system); multi-color spectral imaging (cell-cell and organellar relationships identified by immunofluorescence; biofilm composition; interactions of nerves, macrophages, other inflammatory cells with enteroids; atlas of transport proteins in enteroids under normal conditions and diarrheal diseases); super resolution mode (vesicle-vesicle interactions in regulation of trafficking and bacterial cellular-organellar interactions in biofilm formation); resonant scanning for rapid image acquisition rates (Ca2+ signals in cardiac myocytes and Zn transients in GI tissues). An advantage for our research base is that the FV3000RS will be part of our established Imaging Core that has an established administrative structure led by an Imaging Core Director and Associate Director with documented expertise in advanced imaging, and a core lab manager with many years of experience in teaching use of imaging approaches and maintaining an imaging Core. Moreover, our External Scientific Advisory Committee includes members with documented excellence in advanced imaging. In addition, the Imaging Core has at least >4 years of NIH support for personnel, supplies, the entire service contract requirements for the FV3000RS, plus institutional and philanthropic support established for unexpected repairs, including laser replacement.

Public Health Relevance Statement:
This application to purchase an Olympus Fluoview FV3000RS confocal microscope will provide essential high resolution, high speed imaging capabilities for the Hopkins NIH/NIDDK GI Core Center and its 56 members, as wells as other faculty in the Department of Medicine. It will replace a 10 year old Zeiss 510 Meta that is heavily used (2500h/yr) but is now off service contract and for which parts are no longer made available. We expect that this instrument will lead to advances in the study of GI disorders, especially the pathophysiology of diarrheal diseases, host- pathogen interactions, diseases of the enteric nervous system, contributions of the intestinal microbiome to colon cancer, pathophysiology of Crohn's disease, as well as to the mechanisms of cardiovascular disease.

Project Terms:
10 year old; Advisory Committees; Atlases; base; Cardiac; Cardiac Myocytes; Cardiology; Carrier Proteins; Cells; Color; Contract Services; Disease; Educational process of instructing; Enteric Nervous System; experience; Faculty; Functional disorder; Funding; Hour; Human; Human Resources; Image; imaging approach; imaging study; Immunofluorescence Immunologic; Inflammatory; instrument; Intestines; Lasers; live cell imaging; macrophage; member; Microbial Biofilms; microbiome; Microscope; Minor; Mission; Mus; National Institute of Diabetes and Digestive and Kidney Diseases; Nerve; pathogen; Physiological; Physiology; protein transport; Regulation; repaired; Research; Resolution; Resources; Scanning; Signal Transduction; spectrograph; Speed; Structure; Time; Tissues; trafficking; United States National Institutes of Health; Vesicle

Our thanks to NIH and U.S. taxpayers for the funding for our S10 grant, NIDDK P30DK089502 Center grant, and all our U.S. funding. 


Our thanks (again) to our local Olympus representatives:

Jason Brenner   jason.brenner@olympus-ossa.com ... as of summer 2019 regional manager.

John Gibas, Olympus, john.gibas@olympus-ossa.com

Bo Faust, PhD (James J. Faust), Olympus confocal and multiphoton sales ... email tbd.

Reserve Equipment